
© PacteraEDGE. Confidential. All rights reserved.

By Ovidiu Mura ovidiu.mura@pacteraedge.com

In a highly interconnected world where technology changes rapidly data privacy and
securing the applications from bad actors is essential. The B2C Cloud Native
applications are opened to the public internet to be able to reach all possible
customers but this comes with risks. The B2C Cloud Native applications can have
vulnerabilities in design, source code, network security policies, or the vulnerability
which comes with the deployment on the Cloud platforms. Bad actors can exploit
vulnerabilities which can be exposed by a negligent development process, but if the
software development engineers and security engineers work together and use the
best coding practices in their software development process, vulnerabilities can be
mitigated completely.

B2C (Business-to-Consumer) applications are applications which have a design
model where the products or services move directly from a business to the customer
who purchases them for personal use via the internet. Cloud-Native is an approach
that takes advantage of the cloud computing delivery model for building and running
applications. Cloud Native Applications are applications which are built from ground
up, and are optimized for cloud scale and performance. They are built based on
microservices architectures, use managed services, and take advantage of
continuous delivery to achieve reliability and faster time to market. Cloud-native
computing takes advantage of many modern techniques, including PaaS, multi-
cloud, microservices, agile methodology, containers, CI/CD, and devops. [1]

Coding Best practices for building
Intelligent B2C Cloud Native Applications
September 4, 2020

Software Engineer at PacteraEdge

© PacteraEDGE. Confidential. All rights reserved.

Cloud-Native Applications run on cloud-based compute solutions so that the
developers don’t worry about the infrastructure details; the resources can be easily
scaled up or scaled out as the application usage grows. Azure provides Infrastructure
as a Service (IaaS) which gives the developer full control over the application hosting
- customer-managed products such as Virtual Machines/Virtual Networks. Azure
provides Platform as a Service (PaaS) which gives to developers fully managed
services needed to power your applications such as platform-managed solution
Service Fabric and App Service. Azure provides serverless hosting where all the
developer needs to do is only write code; serverless solutions with Azure are
Functions. [2] The other big Cloud service providers such as GCP (Google Cloud
Platform), AWS (Amazon Web Services) deliver similar solutions with some
differences. The software developer engineers need to define the Cloud Native
Application architecture/functional requirements and then look for the best Cloud
service provider solutions offered by different vendors.

The key characteristics of Cloud-Native applications are multiple services, elasticity,
resiliency, and composability. Each application can be separated into loose coupled
services called Microservices (multiple services) and they communicate to each
other through a controller as a single application which interacts with the end user.
The elasticity is the property of the Cloud service to scale vertically (up/down) and
horizontally (in/out) the application deployed. The cloud platform services are
dynamically managed and they guarantee an efficient usage of the resources per
customer demand. The services which compose the Cloud-Native application are
resilient because they still run properly when the Cloud platform services experience
outages or failures. APIs can define composable behaviour for each microservice to
be consumed by the other applications.

The Cloud-Native applications can be deployed fast and easy in the cloud using CI
(Continuous Integration) and CD (Continuous Delivery/ Continuous Deployment) and
the microservice and the applications are auto-scalable independently and
automatically. The microservices which compose the Cloud-Native application
provides an architecture for the application to be built independently of each

Horizontally vs Vertically Scalling https://www.linkedin.com/pulse/scalability-horizontal-vs-vertical-scaling-scale-outin-khaja-shaik-/1

https://www.linkedin.com/pulse/scalability-horizontal-vs-vertical-scaling-scale-outin-khaja-shaik-/

© PacteraEDGE. Confidential. All rights reserved.

other in such a way that they are updated, managed and deployed individually. The
cost to build these applications is efficient and cheaper than Non-Cloud-Native
applications because the account is charged only for what is used and the resources
can be created and deleted on demand without leaving any overhead.

The APIs and other Cloud services can be managed and developed using platform
specific SDKs and other additional SDKs such as .NET, Node.js, Java, PHP, Python,
Ruby, Go and others. Many programming languages provided for the Cloud-Native
application to be built opens more vulnerabilities in the application development and
easier the functionality to be broken. Next, I will present a few best coding practices
for building B2C (Business-to-Consumer) Cloud-Native applications. Software
Developer Engineers and Security Engineers must work together to overcome the
challenges which come with building B2C (Business-to-Consumer) Cloud-Native
applications. The Cloud-Native applications are dependent on the internet and
computer networks which makes the process of building reliable quality applications
complex.

The broken object level authorization vulnerability is an access control mechanism
that is implemented to ensure that only the desired user can access objects in the
given environment. The APIs endpoints which receive object ID and perform any
type of action on that object must implement object level authorization checks which
validate that the logged-in user has proper permission access to perform the
requested action on the requested object. If this mechanism is not implemented
properly it will lead to unauthorized information disclosure, modification or destruction
of all data. For example, an malicious attack scenario would be in the HTTP PATCH
request when the attacker modifies a custom HTTP request header X-User-Id: 2 to
X-User-Id: 1. The attacker will receive a successful HTTP response and will be able
to modify the User-Id 1 account data if it exists.

The developers implement proper authorization mechanisms using user policies and
hierarchy to prevent broken object level authorization vulnerability. Developers use
authorization mechanisms to check logged-in users and their access is allowed to
perform the requested action on the object. Developers can prevent by using random
and unpredictable values as GUIDs for object or records IDs. Also, developers must

© PacteraEDGE. Confidential. All rights reserved.

write and execute tests which validate the authorization mechanisms before the
artifacts are deployed and they deploy only the quality code which passes these
tests into the production.

Another vulnerability in the code of Cloud-Native applications can be broken user
authentication which can appear in the APIs endpoints and flows unprotected such
as “Forgot password / reset password”. They need to be implemented as
authentication mechanisms. The endpoints and the flows can be attacked if they
permit credential stuffing [8] - attacker attacks with a list of valid users and
passwords. The attacker also can perform a brute force attack on the same user
account if there is no captcha or account lockout implementation. An attack can be
successful on weak passwords, or if the sensitive authentication details (auth tokens
and passwords) are sent in the URL, or the authenticity of tokens are not validated.
The APIs are also vulnerable if they accept JWT tokens which are unsigned or
weakly signed, or the tokens are not validated for the expiration date. The passwords
must not be used in plain text and they must be strongly encrypted with powerful
encryption keys. A well known attack on this type of vulnerability is the credential
stuffing which uses a list of known username and passwords for which the attacker
uses the application as a password tester to determine if the credentials are valid.

To prevent broken user authentication vulnerability, the developers must know all the
possible flows to authenticate to the API and carefully examine peers to verify if the
possible flows to authenticate are correct and they are implemented as they
intended. The authentication APIs, tooken generation, password storage flows must
be implemented by specifications of the corresponding standard. It is recommended
to implement multi-factor authentication if the system allows, and strict anti brute
force mechanisms to mitigate credential stuffing, dictionary attacks, and brute force
attacks on the authentication endpoints. The brute force attack can also be
prevented by implementing account lockout and captcha mechanisms for more
vulnerable users and the API keys should be used strictly for client app and project
authentication access, Figure 1.

© PacteraEDGE. Confidential. All rights reserved.

API Producer

Project

App Developer

Backend

API Key

Authentication
TokenEnd User

Login

App/website

ESP

Figure 1 - Authentication tokens identify a user that is using the app or the site [9].

Injection is another API vulnerability and it occurs when Client supplied data is not
validated, filtered, or sanitized. The client-supplied data is directly used or
concatenated to queries, commands, XML parser, ORM/ODM. The injection
vulnerability also occurs when the data is coming from the external systems and is
not validated, filtered, or sanitized. An example of an injection scenario is when a
booking application with basic CRUD functionality has one of the delete booking
request’s parameters changed, Figure 2.

Figure 2 - The API server delete request for the Injection vulnerability scenario

The changed delete request’s parameter is bookingId from the query string; the
injection changed parameter bookingId delete another user’s booking object.

© PacteraEDGE. Confidential. All rights reserved.

To prevent the injection vulnerability, the data must be separated from the commands
and queries. The data must be validated using a single, trustworthy, and actively
maintained library. Data coming from client or integrated systems must be validated,
filtered and sanitized properly. The developer should use safe APIs that provide
parameterized interfaces and the number of returned records must be limited to a
small number to prevent the mass disclosure in case of injection. Also, the incoming
data must be validated with filters to allow only valid values for each input parameter
and define data types and strict patterns for all string parameters.

Next, I want to talk about the vulnerability on the server-side called server-side
request forgery (SSRF). The attacker makes HTTP requests from the server-side to
an arbitrary domain of the attacker’s choosing. When the attacker gains access to
the server-side, it can make requests back to itself or to a different web-based
service on the organization’s infrastructure or third-party systems. SSRF attacks
perform unauthorized actions or access to data within the organization, either in the
vulnerable application itself or on other back-end systems that the application can
communicate with and the attacker can execute arbitrary commands. SSRF attacks
often exploit trust relationships to escalate an attack from unauthorized actions in
relation to the server itself or in relation to other back-end systems within the same
organization.

I will talk about the SSRF attacks against the server itself scenario in which the
attacker induces the application to make an HTTP request back to the server that is
hosting the application, via its loopback network interface. The supplied URL which
has the hostname 127.0.0.1 (localhost). The trust relationship where the requests
originated from a local server are processed differently than the other requests
makes the SSRF critical vulnerability. For example, let’s present a scenario in which
we have a shopping application that the user can view if an item is in stock in a
particular store. The application queries back-end REST APIs for a given product
and the store. The implementation passes the url to the corresponding back-end API
endpoint via a front-end HTTP request, Figure 3.

© PacteraEDGE. Confidential. All rights reserved.

The server will make the request of the given URL, retrieve the stock status and then
return this response to the user. The attacker can modify the request by setting a
URL relative to the local server, Figure 4.

Figure 3 - Back-end endpoint via a front-end HTTP request

The server will fetch the content of the /admin URL and return the response to the
user or the attacker can also access the /admin URL directly which is available
usually only for the admin users. When the attacker visits th url directly, it will not see
the /admin content, but when the request to the /admin url comes from the local
machine itself, the normal access controls are bypassed and the application allow full
access to the admin functionality since the request appears to originate from the
trusted location. The reasons for this type of vulnerability can be that the access
control check might be implemented in a different component that sits in front of the
application server and when a connection is made back to the server itself, the check
is bypassed. Another reason for this type of vulnerability is that the app allows admin
access without logging in to the users coming from a local server, for disaster
recovery purposes, considering these users fully trusted. The admin instance on the
local server can be listed on a different port number than the main app, and it might
not be reachable directly by users.

Figure 4 - An attacker can modify the request to /admin url

© PacteraEDGE. Confidential. All rights reserved.

I will present the SSRF attacks against other back-end systems. This type of
vulnerability occurs on the server-side when the application server is able to interact
with other back-end systems that are not accessed directly by the users. These
back-end systems usually are not protected by the network topology, and they have
sensitive functionality with weaker security - that can be accessed without
authentication by anyone who interacts with these systems. For example, let’s
assume that an administrative interface at the back-end URL
https://192.168.0.68/admin can be exploited with SSRF vulnerability to access this
interface by submitting the request from Figure 5.

SSRF vulnerabilities can be prevented with defenses intended to prevent malicious
exploitation but sometimes these defenses can be overcomed. For example, SSRF
uses backlist-based input filters to block input containing 127.0.0.1, /admin and
localhost. These filters can be bypassed using alternative IP representation of
127.0.0.1, such as 2130706433, 017700000001, or 127.1. The attacker can register
his own domain name that resolves to 127.0.0.1 using Burp Collaborator , or
obfuscating blocked strings using URL encoding or case variation. The developer
can prevent these attacks by writing code to detect the attacker's registered own
domain name or obfuscating blocked strings.

Another method to protect SSRF (Server-Side Request Forgery) is using whitelist-
based input filters. The application input filter only allows input that matches, begins
with, or contains a whitelist of permitted values. The filter can be attacked by
exploiting inconsistencies in url parsing which are failed to be noticed, such as
embedding credentials in a url before the hostname, using the @ character . The #
character can be used to indicate a url fragment . The DNS naming hierarchy can be

Figure 5 - SSRF vulnerability to access the administrative interface

https://192.168.0.68/admin

© PacteraEDGE. Confidential. All rights reserved.

replaced a fully-qualified DNS name that the attacker can control . The url can be
encoded to confuse the url parsing code section, this is very useful when the code
that implements the filter handles url encoded characters differently than the code
that performs the back-end HTTP request.

SSRF filters-based defenses can be overcome by open redirection techniques. For
example, the user submitted url is validated to prevent malicious exploitation of the
SSRF behaviour. The allowed url contains an open redirection vulnerability such as if
the API used to make the back-end HTTP request supports redirections, the
attacker can construct a url that satisfies the filter and results in a redirected request
to the desired back-end target, Figure 6.

We can see an example of open redirection vulnerability to bypass the url filter to
exploit the SSRF. The application will validate the supplied stockAPI url is on the
allowed domain (yes, it is in the same domain), then the application requests the
supplied url, which triggers the open redirection. The application will redirect
successfully and make the request to the malicious url. The developer must validate
the supplied url together with the supplied stockAPI url to prevent attacks using open
redirection techniques.

Figure 6 - Open redirection vulnerability to bypass the URL filter

https://portswigger.net/burp/documentation/collaborator
2

https://expected-host@evil-host3

https://evil-host#expected-host
4

https://expected-host.evil-host
5

/product/nextProduct?currentProductId=66

http://evil-user.net7

https://portswigger.net/burp/documentation/collaborator

© PacteraEDGE. Confidential. All rights reserved.

When the application can be manipulated to issue a back-end HTTP request to a
given url and the response is not returned in the front-end of the application, this type
of vulnerability is called blind SSRF. They are harder to exploit but they are very
powerful if they are successfully executed on the remote servers or other back-end
components with elevated privileges. The server-side request forgery vulnerabilities
are pretty easy to find because the application normal traffic contains request
parameters containing full urls, but other types of server-side request forgery are
harder to identify if the full urls are not present in the request’s parameters. The
request parameters have sometimes only hostnames or part of a url path, then the
submitted value is concatenated to the server-side value forming a full target url. The
values are identified as potential attacks if they are hostnames or some form of url
paths.

Blind SSRF vulnerability can be prevented by response handling technique. The
response handling technique limits the content allowed in the response body for
preventing leakage of data and checks the response before sending it to the bad
actors and filters out data not expected by the server. Another way to prevent blind
SSRF vulnerabilities is by disabling unused URL schemas such as “ftp://” or “file://”.
Whitelists and DNS resolution can also be used very effectively to prevent SSRF
attacks by whitelisting only the required DNS names or IP addresses that the
application uses.

Applications also transmit XML data in structural formats with the specification URLs
included, then they are passed to the data parser for processing the request. The
data is transferred from the client to server and when the application accepts/parses
data in XML format, it can be vulnerable to XML external entity injection combined
with the server-side request forgery vulnerability.

XML external entity injection attacks can be prevented by disabling the
corresponding features (XXE). Application’s XML parsing library can have dangerous
XML features that the application doesn’t need.

Other forms of blind SSRF vulnerabilities are performed using Referer header.
Applications sometimes use server-side analytics software that tracks visitors which

© PacteraEDGE. Confidential. All rights reserved.

logs the Referer header in requests for tracking incoming links. The analytics
software will visit any third-party urls that are found in the Referer header for
scanning and analyzing the content of referring sites and the text used in the
incoming links. The attacker can use the Referer header to exploit SSRF
vulnerabilities.

To prevent SSRF Referer header attacks the developer can implement checks using
whitelists and allow only headers with Referer contained in the whitelists. Also the
developer must validate the Referer header against META tag attacks, adding
subdomains of the main request domain attacks, or validate against attacks which
place the vulnerable domain elsewhere in the URL.

Over seventy percent of the business of the world operate fully or in part on the
cloud stated in the CSA report. Ninety percent of organizations are moderately or
very concerned about public cloud security. These concerns are the result of code
vulnerabilities, hijacked accounts, malicious insiders, and full-scale data breaches,
which occur in the cloud in the last years. I will mention a few. Data breaches occur
on cloud and the security measure to protect data are very low according to a
Ponemon Institute study . Attackers hijack accounts using user login information to
remotely access sensitive data stored on the cloud and they can falsify and
manipulate information through hijacked credentials. Attackers from inside the
organizations can misuse their authorized access in scenario such as misuse of
information through malicious intent, accidents or malware . Cloud services are
vulnerable for malware injections (scripts or code embedded) running as SaaS on
cloud servers . Cloud services can be abused by storing

SSRF Remediations, https://medium.com/cybersecurityservices/server-side-request-forgery-aashna-jain-bcc42aea0479
8

XXE, https://portswigger.net/web-security/xxe9

According to Cloud Security Alliance (CSA), https://www.imperva.com/blog/top-10-cloud-security-concerns10

Man In Cloud Attack, http://go.netskope.com/rs/netskope/images/Ponemon-DataBreach-CloudMultiplierEffect-June2014.pdf
11

Inside Track on Insider Threats, https://www.imperva.com/resources/resource-library/white-papers/an-inside-track-on-insider-threats/12

Security Threats On Cloud Computing Vulnerabilities, http://airccse.org/journal/jcsit/5313ijcsit06.pdf13

https://medium.com/cybersecurityservices/server-side-request-forgery-aashna-jain-bcc42aea0479
https://portswigger.net/web-security/xxe
https://www.imperva.com/blog/top-10-cloud-security-concerns
http://go.netskope.com/rs/netskope/images/Ponemon-DataBreach-CloudMultiplierEffect-June2014.pdf
https://www.imperva.com/resources/resource-library/white-papers/an-inside-track-on-insider-threats/
http://airccse.org/journal/jcsit/5313ijcsit06.pdf

© PacteraEDGE. Confidential. All rights reserved.

huge amounts of data easily with the cloud storage services . Cloud APIs can be a
threat to cloud security because the security risks grow proportional to infrastructure
of APIs size. The communication between applications exposes the APIs to
vulnerabilities increasing the security risks. Denial of Service (DoS) is another form
of attacks which attempt to make the B2C Cloud-Native applications and servers
unavailable to their customers. Another source of vulnerabilities in the cloud is the
insufficient due diligence when an organization migrates their applications to Cloud-
Native applications; it is common to companies with data under regulatory laws like
PII, PCI, PHI, and FERPA. Providers such as Box, Dropbox, Microsoft, and Google
require the client to take preventative actions to protect their data while the providers
do have standardized procedures to secure their side. Share vulnerabilities occur
when the cloud security is shared between the provider and the client. Losing data
on cloud service can also be through malicious attacks, natural disaster, or a data
wipe by the service provider. Securing data means carefully reviewing provider back
up procedures as they relate to physical storage locations, physical access, and
physical disasters.
The common vulnerabilities presented above are a serious threat and a strong
reason for the development teams to build a cloud strategy to protect the Cloud-
Native Applications. I talked about the B2C design model and the benefits of building
Cloud-Native applications and how the cloud providers deliver services to the
consumers. Then I presented code best practices by discussing vulnerabilities of the
Cloud-Native applications implementation and how the attackers plan to attack the
systems. Next, I discussed in detail the necessary steps required to be taken to
secure the applications from the presented vulnerabilities. Finally, I shared report
results of studies conducted to measure the cloud security current issues which
shows that B2C Cloud-Native applications have a low security overall. To increase
the security in the cloud, software development engineers and the security engineers
must work together, and split responsibilities and implement coding best practices in
the applications. Let’s build Intelligent B2C Cloud Native Applications!

The Notorious Nine
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf

14

DoS, https://www.imperva.com/learn/ddos/denial-of-service/15

https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://www.imperva.com/learn/ddos/denial-of-service/

© PacteraEDGE. Confidential. All rights reserved.

Ovidiu is a Software Engineer at PacteraEdge. He has a
Graduate MS degree in Computer Science from Portland
State University and a Graduate certification degree in
Cybersecurity from Portland State University. He also
has over ten years experience working in various
technology domains such as financial delivery systems,
healthcare integrated systems, eCommerce systems,
automation, cybersecurity, artificial intelligence, machine
learning and algorithms.

ABOUT THE AUTHOR

Andy Patrizio. (June 14, 2018). What is cloud-native? The modern way to develop software. InfoWorld.
https://www.infoworld.com/article/3281046/what-is-cloud-native-the-modern-way-to-develop-software.html

[1]

REFERENCES

Microsoft Docs. (November 18, 2019). Get Started guide for Azure developers.
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide

[2]

Saviant Intelligent Solutions. (2020). Everything you need to know about Cloud-Native Applications.
Saviantconsulting.com.
https://www.saviantconsulting.com/blog/everything-about-cloud-native-applications.aspx

[3]

Anubhav Dwivedi. (2020). Saviant intelligent Solutions. 3 Reasons Why Developing Cloud-Native
Applications are Worth the Time and Money.
https://www.saviantconsulting.com/blog/3-reasons-why-developing-cloud-native-applications-is-worth-the-time-and-money.aspx

[4]

Paulo A Silva. (Dec 26, 2019). OWASP API Security Top 10. OWASP. https://github.com/OWASP/API-Security[5]

DevSpecOps.org. (2012-2015). Manifesto. https://www.devsecops.org/[6]

OWASP Cheat Sheet Series. (2020). Authentication Cheat Sheet.
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

[7]

CloudFlare. (2020). What is Credential Stuffing? https://www.cloudflare.com/learning/bots/what-is-credential-stuffing/[8]

Google Cloud. (2020). Why and when to use API keys. https://cloud.google.com/endpoints/docs/openapi/when-why-api-key[9]

PortsSwigger. (2020). Server-Side Request Forgery (SSRF). (2020). https://portswigger.net/web-security/ssrf[10]

Joy Ma. (December 14, 2015). Top 10 Security Concerns for Cloud-Based Services. Imperva.
https://www.imperva.com/blog/top-10-cloud-security-concerns/

[11]

OWASP. (2020). OWASP Cheat Sheet Series.CheatSheetSeries.owasp.org.
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

[12]

https://www.infoworld.com/article/3281046/what-is-cloud-native-the-modern-way-to-develop-software.html
https://docs.microsoft.com/en-us/azure/guides/developer/azure-developer-guide
https://www.saviantconsulting.com/blog/everything-about-cloud-native-applications.aspx
https://www.saviantconsulting.com/blog/3-reasons-why-developing-cloud-native-applications-is-worth-the-time-and-money.aspx
https://github.com/OWASP/API-Security
https://www.devsecops.org/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://www.cloudflare.com/learning/bots/what-is-credential-stuffing/
https://cloud.google.com/endpoints/docs/openapi/when-why-api-key
https://portswigger.net/web-security/ssrf
https://www.imperva.com/blog/top-10-cloud-security-concerns/
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

